
U
S E CU F

AD-A2O3 33*2 Form Approved
IENTATION PAGE OPABpo.ve04-0Ia R1I OM8 o. 0704-018 !

lb RESTRICTIVE MARKINGS ,, ,p --

2a. SECURITY CLASSIFICATION AUTHQIy 4 -' 3. DISTR18UTION /AVAILABILITY OF REPORT

2b. ECLASSIFICATION/DOWNGRA -Hi9ULE- Approved for public release;
44M : " distribution is unlimited.

4. PERFORMING ORGANIZATION RE IUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-88-1 142

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZAT;ON

AFWAL Avionics (If applicable) Information Transmission Branch

Laboratory IAFWAL/AAAI-3 Radio Systems Group
6c. ADDRESS (City, State, and ZlIPCode) 7b. ADDRESS (City, State, and ZIP Code)

AFWAL/AAAI -3 AFWAL/AAAI-3
Wright-Patterson AFB OH 45433-6543 Wright-Patterson AFB OH 45433-6543

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Air Force Avionics Lab AFWAL/AAAI-3 _

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS-

AFWAL/AAAI-3 PROGRAM PROJECT |TASK WORK UNIT

Wright-Patterson AFB OH 45433-6543 ELEMENT NO. NO. I NO ACCESSION NO.
,62204F 12538 I 02 I 04

1 1. TITLE (Include Security Classification)
6

I

Software Development Guidelines
12. PERSONAL AUTHOR(S)

Ms Denice S Jacobs
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

-I FROM ____ TO ___ 88/4/1 4

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neceSsary and identify by block number)

FIELD GROUP SUB-GROUP CCB, ICDs, Software Development Cycle, System I&T

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Due to the growing complexity of avionic systems, the development cycle for

mission critical software has evolved into a collective process of organized

tasks. These tasks are distinct levels of effort which are implemented by

the developer to ensure the creation of a reliable, operational system.

This paper summarizes four principle tasks which have proven to be excellent

procedures for developing avioncs software.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
FSINAru| ASIFIED/UNLIMITED [SAME AS RPT. Q DTIC USERS UNCLASSIFED

'RESPONSIBLE INDIVIDUAL 2gb. TEI 7HQ nc ude-greCL

S. Jacobs 1) - 3

3, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

p d Iii III I IIII/llll

SOFTWARE DEVELOPMENT GUIDELINES

By

Denice S. Jacobs
Aeronautical Systems Division

Air Force Wright Aeronautical Laboratories
Wright-Patterson AFB OH 45433-6543

SUP4ARY

Due to the growing complexity of avionic systems, the develop-
ment cycle for mission critical software has evolved into a
collective process of organized tasks. These tasks are
distinct levels of effort which are implemented by the devel-
oper to ensure the creation or a reliable, operational system.
This paper summarizes four principle tasks which have proven
to be excellent procedures for developing avionics software.
The first and foremost task of the project manager is to
establish a Configuration Control Board (CCB) as the central
core of technical management. It consists of a group of key
hardware and software engineers who mutually govern the status
of system development, and incorporate design changes on an
agreed-to basis. The second task is to logically separate the
software project into well-defined phases of development.
This, too, requires the cooperation of both hardware and
software teams to work together in accordance with a master
schedule. The third task is to create an automated data base
which contains the latest interface specifications (ICDs) and
system message definitions for use by the engineers. Finally,
the last task is to procure hardware emulators and stand-alone
test stations as an effective M.an-s-,of testing software prior
to system integration and test?(I&T). ()

INTRODUCTION

Due to the growing complexity of avionic systems, the develop-
ment cycle for mission critical software has become more
involved in terms of the difficulty and number of software,
interface, and test requirements to be defined. Consequently,
the probability of incurring design/coding errors is increased
due to written and verbal miscommunications between the
hardware and software development groups, information laten-
cies due to the number of developers involved, and inadequate

c° 8 .

software testing prior to system I&T. In order to help

minimize the aforementioned problems, it was necessary to

create several guidelines which 1) enforce a formal communica-
tion network between the hardware and software groups; 2)

enhance the visibility of software progress; 3) improve

information access; and 4) enhance the software verification

process. These guidelines evolved into four specific tasks

which are addressed in the following paragraphs.

TASK 1: CCB MANAGEMENT

The first task is to establish a Configuration Control Board

(CCB) which enforces a formal communication network between

the hardware and software development groups. The Board

consists of key engineers and managers from both disciplines
who mutually govern the status of the system and incorporate

design changes on an agreed-to basis. They attend all formal

design reviews and major design walk-throughs to ensure that

neither group is being compromised. They also meet on a
weekly basis to review the current state of the system and

examine design problem reports which are generated throughout
the development effort (i.e., from requirements definition to
system I&T). Finally, all design-related issues are properly

documented and reviewed by the CCB before any changes are

officially made to either the hardware or software designs.

TASK 2: SOFTWARE DEVELOPMENT PHASES

The second task is to divide the software project into six
logical phases of development:

1) Software Requirements Definition
2) Top-Level and Detailed Design
3) Module Code and Test
4) Component I&T
5) Configuration Item I&T
6) System I&T

The first phase is to define the software requirements in
relationship to the hardware requirements to ensure that
design oversites are not incurred. Additionally, this phase

must be completed prior to starting the second phase in order

to establish a known baseline of requirements.

The second phase mandates the satisfactory completion of all
of the software design reviews and walk-throughs prior to
coding the software. Work folders are then established which
contain all of the software material pertaining to a particu-
lar processing element called a configuration item
(e. g., data processors and signal processors are two separate

GOrP

FNJE6 I

configuration items). Examples of data recorded in the work
folder include software requirements, top-level and detailed
design descriptions, walk-through results, source listings,
module code and test history, component and configuration item
I&T history, and design problem reports.

The third phase requires that each software function be
developed in a modular fashion and tested accordingly (i.e., a
module is defined as being a small compilable file which
performs a single function in an efficient manner). In
addition, module development is typically performed on a
mainframe computer so that the programmer can take advantage
of various support tools such as the Scenario Generator/
Monitor, the ICD data base and debuggers.

Once each module meets its own unique performance require-
ments, then software development transitions to the component
I&T phase where a set of related modules are integrated and
tested as a whole entity. Again, this phase of development
takes place on a mainframe to take advantage of the support
tools.

The next phase is to integrate and test a set of related
components which comprise a given configuration item. This
development takes place on both the mainframe and the target
processor so that other helpful tools may be utilized (e.g.,
the hardware emulator which resides on the mainframe and the
stand-alone test station which interfaces to the processor).
Additionally, the developer will be able to assess how well
the software runs on the hardware during this phase of devel-
opment.

The final phase is System I&T, whereby the configuration items
are integrated together to create individual threads of
operation. This is the final and most difficult stage of
software development since it involves the integration of
several unique hardware and software elements.

In summary, these software development phases have proven to
be excellent procedures for developing software while, at the
same time, enhancing program visibility and control.

TASK 3: AUTOMATED ICD DATA BASE

The use of an automated ICD data base is beneficial to the
user in several respects. By its very nature, it is readily
available to anyone who has the appropriate need-to-know
authorization to access the host computer which supports the
toolset. The data base also contains a detailed description

of every message and ICD used within the system. Therefore,
written and verbal miscommunications between the various
development groups are effectively minimized, if not totally
eliminated.

The data base is maintained by the CCB on a weekly basis. Any
proposed changes to the baselined hardware or software designs
are always documented in design problem reports and formally
reviewed by the CCB. If approval is granted, then the data
base is updated by the CCB to reflect these modifications.

In conclusion, the automated data base is an invaluable source
of design/interface data because it is readily accessible to
all users and provides current information.

TASK 4: SOFTWARE TEST ENVIRONMENT

The following test environments were chosen since they verify
three aspects of software design, namely the software-to-
software interfaces, the hardware-to-software interfaces, and
real-time operation.

Scenario generators and monitors are useful software programs
which are used to stimulate the software packages while
monitoring the message traffic between the software modules
(i.e., software-to-software interface). Hence, the developer
can easily test the software with a number of possible scenar-
ios and examine the resultant messages.

Hardware emulators are also useful software programs which
emulate the operational characteristics of the host processor.
This is beneficial in determining the validity of the software
algorithm in relation to the processor's capabilities and
limitations (i.e., hardware-to-software interface).

Finally, the stand-alone test stations are unique hardware
environments which are used to debug the software during
real-time operation. This, too, is an invaluable tool since
it permits the developer to examine the results from individu-
al software instructions during actual execution times.

CONCLUSION

With the advent of highly programmable systems, there surfaced
a need within the avionics community to establish guidelines
which definitized the relationship between hardware and
software development efforts. These guidelines evolved into
four specific tasks which ensure that: 1) design oversites
are minimized; 2) software progress is controlled; 3)
critical interface definitions are readily available; and 4)
software is fully tested prior to system I&T. It is believed,
therefore, that the combined implementation of all four tasks
will ensure the development of a reliable, operational system.

